Nonextensive statistical mechanics for hybrid learning of neural networks
نویسندگان
چکیده
This paper introduces a new hybrid approach for learning systems that builds on the theory of nonextensive statistical mechanics. The proposed learning scheme uses only the sign of the gradient, and combines adaptive stepsize local searches with global search steps that make use of an annealing schedule inspired from nonextensive statistics, as proposed by Tsallis. The performance of the hybrid approach is empirically investigated through simulation in benchmark problems from the UCI Repository of Machine Learning Databases. Preliminary results provide evidence that the synergy of techniques from nonextensive statistics provide neural learning schemes with signi5cant bene5ts in terms of learning speed and convergence success. c © 2004 Elsevier B.V. All rights reserved. PACS: 07.05.Mh; 87.18.Sn; 05.10.−a
منابع مشابه
A nonextensive method for spectroscopic data analysis with artificial neural networks
In this paper we apply an evolving stochastic method to construct simple and effective Artificial Neural Networks, based on the theory of Tsallis statistical mechanics. Our aim is to establish an automatic process for building a smaller network with high classification performance. We aim to assess the utility of the method based on statistical mechanics for the estimation of transparent coatin...
متن کاملNeural networks training and applications using biological data
Training neural networks in classification problems, especially when biological data are involved, is a very challenging task. Many training algorithms have been proposed so far to improve the performance of neural networks. A popular approach is to use batch learning that employs a different adaptive learning rate for each weight. Most of the existing algorithms of this class are based on the ...
متن کاملHYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY
The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorith...
متن کاملEvolving Stochastic Learning Algorithm Based on Tsallis Entropic Index
Abstract In this paper, inspired from our previous algorithm, which was based on the theory of Tsallis statistical mechanics, we develop a new evolving stochastic learning algorithm for neural networks. The new algorithm combines deterministic and stochastic search steps by employing a different adaptive stepsize for each network weight, and applies a form of noise that is characterized by the ...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004